Human cortex development is shaped by molecular and cellular brain systems

Leon D. Lotter^{1,2,3}, Amin Saberi^{1,2,4}, Justine Y. Hansen⁵, Bratislav Misic⁵, Gareth J. Barker⁶, Arun L. W. Bokde⁷, Sylvane Desrivières⁸, Herta Flor^{9,10}, Antoine Grigis¹¹, Hugh Garavan¹², Penny Gowland¹³, Andreas Heinz¹⁴, Rüdiger Brühl¹⁵, Jean-Luc Martinot¹⁶, Marie-Laure Paillère^{16,17}, Eric Artiges^{16,18}, Dimitri Papadopoulos Orfanos¹¹, Tomáš Paus^{19,20}, Luise Poustka²¹, Sarah Hohmann²², Juliane H. Fröhner²³, Michael N. Smolka²³, Nilakshi Vaidya²⁴, Henrik Walter¹⁴, Robert Whelan²⁵, Gunter Schumann^{24, 26}, IMAGEN Consortium, Frauke Nees^{9,22,27}, Tobias Banaschewski²², Simon B. Eickhoff^{1,2}, and Juergen Dukart^{1,2}

¹INM-7: Brain and Behaviour, Research Centre Jülich, Germany | ²Institute of Systems Neuroscience, Heinrich-Heine-Universität Düsseldorf, Germany | ³Max Planck School of Cognition, Leipzig, Germany | ⁴⁻²⁷ see QR code

Research motivation & impact

¹ Bethlehem, R. A. I. et al. (2022). Brain charts for the human lifespan. *Nature*, *604*(7906), Article 7906

² Rutherford, S. et al. (2022). Charting brain growth and aging at high spatial precision. *eLife*, *11*, e72904.

⁴ Vidal-Pineiro, D., et al. (2020). Cellular correlates of cortical thinning throughout the lifespan. *Sci. Rep., 10*(1), Article 1.

⁶ Hawrylycz, M.J. et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. *Nature*, 489(7416), 391–399.

¹⁰ Lotter, L.D. and Dukart, J. (2022). JuSpyce - a toolbox for flexible assessment of spatial associations between brain maps. *Zenodo*.

³ Dukart, J. et al. (2021). JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. *Hum. Brain Mapp., 42*(3), 555–566.

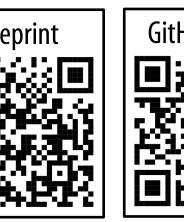
⁵ Hansen, J.Y. et al. (2022). Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. *Nat. Neurosci., 25*, 1569–1581.

⁹ Schumann, G. et al. (2010). The IMAGEN study: Reinforcement-related behaviour in normal brain function and psychopathology. *Mol. Psychiatry*, *15*(12), Article 12.

⁷ Lake, B.B. et al. (2016). Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. *Science*, *352*(6293), 1586–1590.

⁸ Casey, B.J. et al. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. *Dev. Cogn. Neuro., 32*, 43–54.

- Human cerebral cortex morphology is subject to complex and diverse changes over the lifespan^{1,2}.
- Several factors might influence cortical thickness (CT) development and maturation, but human data are scarce.
- Through spatial correlation approaches^{3,4}, recent advances in normative modeling of population-scale neuroimaging data^{1,2}, and availability of multi-level atlases of molecular and cellular brain systems^{5–7}, we identify potential mechanisms underlying human CT development.
- This work...
 - 1) provides new hypotheses on mechanisms involved in human cortex development,
 - 2) introduces a framework for studying neurodevelopmental mechanisms in vivo on the individual level, promising new insights into typical and atypical neurodevelopment alike, and
 - further emphasizes the value of normative modeling frameworks in neurodevelopmental research.


SYSTEMS NEUROSCIENCE

cate in independent

longitudinal data.

6 biological systems

explain up to 59% of

cohort-average and

CT development.

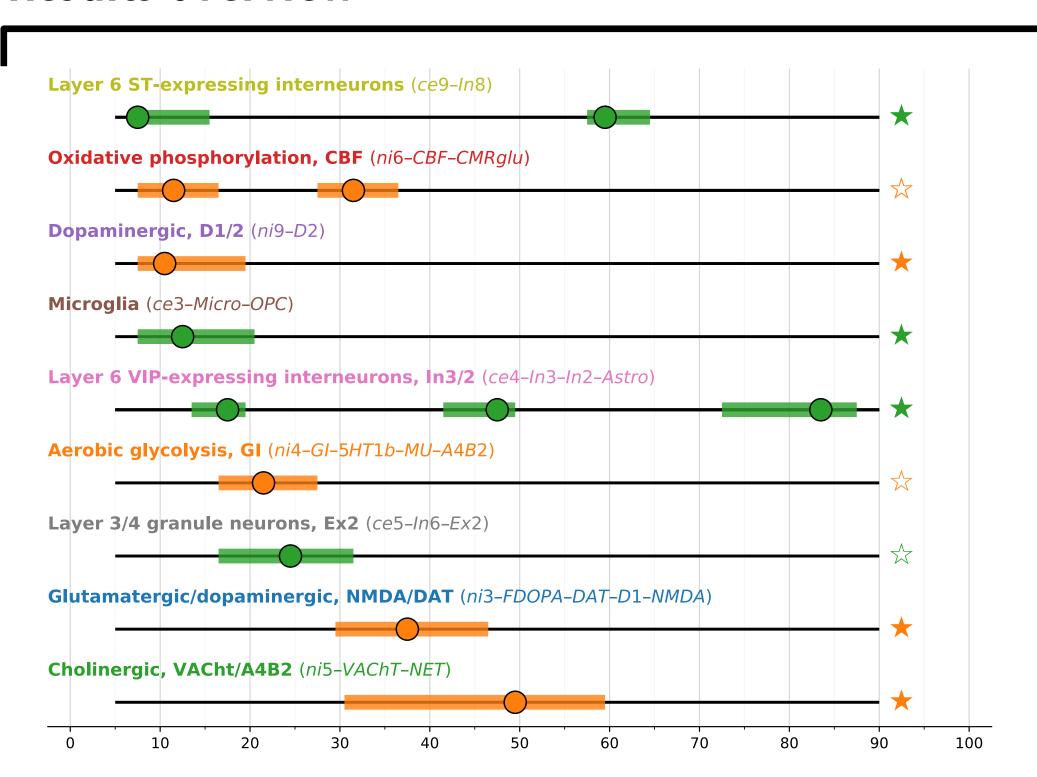
18% of single-subject

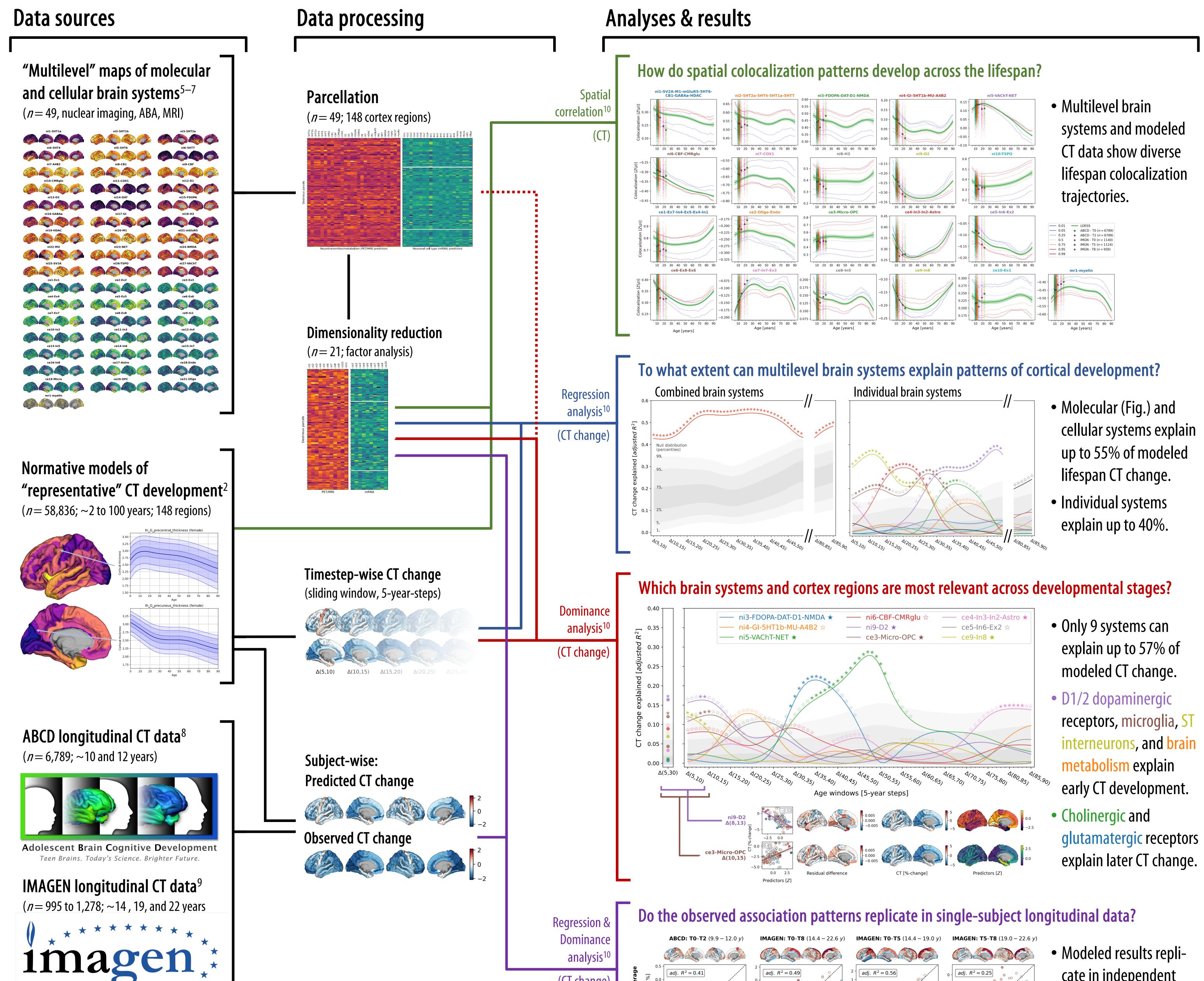
adj. $R^2 = 0.56$

-4 -2 0
Observed CT change [%]

Observed CT change [%]

mean adj. $R^2 = 0.16$


adj. $R^2 = 0.25$


-3 -2 -1 0 Observed CT change [%]

Observed CT change [%]

mean adj. $R^2 = 0.13$

Results overview

adj. $R^2 = 0.41$

-2.0 -1.5 -1.0 -0.5 0.0 0.5

Observed CT change [%]

Observed CT change [%]

mean adj. $R^2 = 0.09$

(CT change)

adj. $R^2 = 0.49$

-8 -6 -4 -2 0 Observed CT change [%]

Observed CT change [%]

mean adj. $R^2 = 0.18$